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•  Objectives of research
•  Experimental results

! heat of hydration
! degree of hydration (C3S and C3A)
! porosity, compressive strength

•  Simulations
•  Conclusions
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Objectives of research:
Predict compressive strength

(of standard mortar; EN 196)

1st step: Simulate cement hydration

Characterize cement
(bogue composition, gypsum, fly ash, silica fume,...)

       NIST simulation software
CEMHYD3D

       cement chemistry 3-D microstructure
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2nd step: calculate compressive strength

powers law: 
AX0σσ =  calibration using N2
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Why does a cement producing company
engage in modelling cement hydration?

1. Lower production costs

Quality control according to DIN 1164:

For every produced cement
•   take two samples every week
•   test compressive strengt after 2d, 7d, 28d
⇒   312 tests/year for every cement

Reduce the number of tests
⇒  lower production costs

2. Speed up availability of information

Quality problems are evident after 28d
- what can be done if cement is already worked up?

In general simulated results are available after some h
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Why have we investigated the influence
of sulfate source on cement hydration?

CaSO4 highly influences development of 
compressive strength (+ cement hydration)

By our research we have tried
•   to figure out the most important influences of  

 CaSO4 on the hydration kinetics of opc,
•   to implement these results in CEMHYD3D and
•   to develop a method to predict compr. strength

 for cements containing diff. amounts of CaSO4
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Experimental results

Ordinary portland clinker (5100 cm2/g)
+ different amounts of anhydrite (10700 cm2/g)
-  w/c = 0.5; T = 20°C

1. CaSO4 accelerates cement hydration
2. A small amount of anhydrite (0.5% SO3) shortens 

the induction period, maximum value is equal
3. Increasing amounts of CaSO4 further accelerate
    the rate of hydration
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Which reactions are responsible for the
accelerated heat evolution?

 80%-90% of the acceleration can be attributed to the
 C3S reaction
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Different amounts of CaSO4 - C3A reactivity?

•  High amounts of CaSO4 retard the hydration of C3A for
more than 14 days

•  Despite retardation more ettringite is formed
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How do different modifications of CaSO4

influence cement hydration?

1. Differences between hemihydrate and
anhydrite ⇒  different solubility

2. CaSO4 retards
      higher solubility of hemihydrate ⇒  more ettringite
      retardation due to layer of „ ettringite“

3. CaSO4 accelerates
      Nonat: [Ca2+] governs rate of reaction of C3S

  High [Ca2+] ⇒  high rate of reaction
      Anhydrite reacts more slowly ⇒  longer available
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First attempts to simulate the
influence of CaSO4 on cement hydration

measured isothermal heat evolution of
- opc with different amounts of anhydrite
- w/c = 0.5

Simulations with NIST computer modelling
software CEMHYD3D

rnuc(CSH) = f(cCaSO4 in solution)
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Simulations on the influence of
hemihydrate on cement hydration

isothermal heat evolution of
- opc with different amounts of hemihydrate
- w/c = 0.5

•  Results look promising
•  Model has still to be refined
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28 d
•  

•  CaSO4 modifies pore structure
•  Poor overall correlation between strength and porosity
•  Excellent correlation for each cement ⇒  calibrate each cement



Dr.CH-2000-06-13-NIST/industry consortiumWilhelm Dyckerhoff Institut

ca
lc

ul
at

ed
 d

at
a

compressive strength [MPa]

experimental data

Prediction of compressive strength

•  Measured compressive strength according to EN 196
- clinker composition (20 clinkers)
- CaSO4 content (0%-9%)
- fineness (5µm-30µm)

•  Simulation of
  cement hydration using
  CEMHYD3D
•  Calibration of
  powers law using N2
•  Predictions (1d - 56d)

maximum difference
≈ 10 N/mm2

average difference
< 3.0 N/mm2
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Conclusions

Experimental results:
•  CaSO4 highly influences compressive strength
•  CaSO4 accelerates cement hydration
•  The higher the amount of CaSO4, the higher is the rate of

hydration
•  80% - 90% of the acceleration can be attibuted to the

acceleration of the C3S hydration
•  CaSO4 retards the hydration of C3A
•  CaSO4 increases capillary porosity + compressive strength

Simulations:
•  First attemps to simulate the influence of CaSO4 on cement

hydration look promising

•  Prediction of compressive strength is possible using
CEMHYD3D and powers law (calibrated)

   Maximum deviation = 10 MPa
   Average deviation    < 3.0 MPa


